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SUMMARY

In several papers of Bouchut et al., Coquel and Le Floch (Math. Comput. 1996; 65(216):1439–1461;
Numer. Math. 1996; 74(01):1–34), a general methodology has been developed to construct second-
order �nite volume schemes for hyperbolic systems of conservation laws satisfying the entire family
of entropy inequalities. This approach is mainly based on the construction of an entropy diminishing
projection. Unfortunately, the explicit computation of this projection is not always easy. In the �rst
part of this paper, we carry out this computation in the important case of the Euler equations of gas
dynamics. In the second part, we present several numerical applications of the projection in the context
of �nite volume schemes. Copyright ? 2005 John Wiley & Sons, Ltd.
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0. INTRODUCTION

In this paper, a methodology to build second-order generalized Godunov schemes satisfying
all the entropy inequalities is described. Our goal is to adapt the Godunov’s original idea,
which leads to �rst-order schemes, in order to obtain a second-order scheme. The construction
is done completely in the case of the Euler equations.
Let us recall that in the classical �rst-order scheme, each time-step of the time-marching

procedure is made up of two stages:

1. Exact (or high order) resolution of the system of conservation laws starting from the
cell averages of the previous time-step. This resolution is performed during a short time
� so that the Riemann problems of the two sides of each cell do not interact.
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1030 F. COQUEL, P. HELLUY AND J. SCHNEIDER

2. The result of the previous stage is no longer constant in the cells. A projection is then
realized in order to recover a piecewise constant approximation. For a �rst-order scheme,
the only conservative projection is cell averaging.

This description is of course theoretical. In practice, a numerical �ux can be associated to this
procedure so that the two stages become transparent in the implementation of the scheme.
The �rst scheme designed in this way is described by Godunov in Reference [1]. We shall

call in the sequel this kind of scheme, based on an exact or approximate Riemann solver, a
Godunov scheme. This terminology is developed in the review paper of Harten et al. [2]. Most
of the conservative schemes can be put in this framework as the HLL scheme [2], HLLC
scheme of Toro et al. [3], Roe scheme [4], Engquist–Osher scheme [5], kinetic schemes [6–8],
and many others.
The original Godunov scheme has the important property that it respects on the discrete

level the decrease of all the Lax entropies of the approximated hyperbolic system. This is
an important property which is closely linked to the stability of the scheme and with the
possibility of non-physical waves if the scheme is not entropic. For example, the HLL, HLLC
and Engquist–Osher schemes are entropic whereas the original Roe scheme is not entropic.
With a simple modi�cation, it can be made entropic (for example, see the �x of Harten and
Hyman [9]).
Another important feature emerging from the construction of the Godunov schemes is that

the cell values are high-order approximations of the exact mean values. They are also second-
order approximations of the exact values in the centre of the cells. Unfortunately, because
they are only �rst-order approximations on the cell sides, an error of order one is committed
in the computation of the numerical �ux.
These remarks have been used to improve the precision of Godunov schemes. The most

widespread improvement consists of reconstructing a more precise approximation of the solu-
tion by using cell averages and Taylor expansions. This reconstruction allows one to compute
more accurately the �uxes, but has to be corrected by a limitation procedure in order to avoid
oscillations or non-physical values.
The main criterion in these methods is a total variation diminishing (TVD) criterion. Many

works deal with second-order Godunov schemes (we can cite for example the works of Van
Leer [10] or Harten [11]) which give good numerical results in various practical computations.
Anyway, since the work of Rauch [12] it is well known that the TVD criterions are inadequate
in the theoretical study of systems of conservation laws in higher dimensions. There is no
hope to prove convergence results in a general framework with these limitations.‡

In this paper, another approach is followed, which is closer to the Godunov’s original idea.
On the one hand, we shall consider the resolution of a generalized Riemann problem with
piecewise linear (instead of constant) initial data. The solution will then have to be projected
back onto a set of piecewise linear functions. On the other hand, in the projection step,
we substitute for the TVD criterion a mean entropy decreasing criterion which seems more
adequate for systems. An important feature is that this stability criterion will be veri�ed for
the whole family of entropies of the system. Such an approach has been initiated for scalar
conservation laws by Bouchut et al. in Reference [13] and has been extended to 2×2 systems

‡It should also be noticed that the TVD criterion is limited to cartesian grids in the multi-d case, even for scalar
equations.
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of conservation laws and to the 3× 3 system of Lagrangian gas dynamics by Coquel and Le
Floch in Reference [14]. Our paper deals with the case of the Euler system.
The �rst part is devoted to a mathematical study of the projection stage. The problem can be

stated in the following way: the three conservative variables, after the Riemann problem step
are, generally speaking, piecewise regular functions in each cell of the �nite volume method.
The goal of the projection is to recover linear variables in the cells in order to pursue the
resolution. Because the mean values of these variables are given by the conservation property,
it is su�cient to compute three slopes. The projection can then be seen as the operator which
gives these slopes from the original piecewise regular conservatives variables in the cells. It
is known that this operator cannot be linear. Indeed, it can be proved that a general linear
projection (such as the classical L2 projection) will not always respect the positivity of the
projected density and pressure. It is of course linked to the fact that there is no second-
order linear three point scheme which is also TVD for the scalar conservation laws (see
Reference [15]). Because we are working on systems we will require that the projection
operator is entropic. By entropic, we mean that the mean value in each cell of the entropy of
the projection is smaller than the mean entropy of the original conservative variables. It is very
interesting that this entropy diminishing property gives also the positivity of the projected
variables. This result is proved in Remark 2.
Here, we are able to prove the existence of a non-linear projection for the Euler equations

and provide explicit formulas. The construction is based on several ingredients:

• First, we recall the theory of second-order entropic projections of Reference [13]. This
theory is based on the de�nition of an approximate derivative (De�nition 5) and a
su�cient condition in order to have an entropic projection (Theorem 1). A very nice
feature of this theory is that, when applied to a scalar conservation law, the entropic
projection is very similar to a classical minmod limiter.

• This su�cient condition is not exploitable as is for the Euler system, and it does not
give easily an explicit formula for the slopes of the projection. Thus we propose to seek
the projection as the composition of two non-linear operators. To build the �rst operator,
we work with special variables (density, momentum and a particular entropy) for which
the su�cient condition of Theorem 1 can be computed. We then reduce the �rst step of
the projection to the solution of a triangular set of inequalities (16)–(18) for the three
slopes.

• The �rst operator is not conservative for the energy. The mean value of the projected
energy has thus to be corrected. We prove that the correction is still entropy diminishing
and thus does not impede the whole process. This fact can also be used by to built
simple entropic schemes for the Euler equations based on the intermediate solution of
the entropy conservation law.

• Finally, we provide formulas that explicitly solve the fundamental triangular set of
inequalities for the slopes. These formulas are summed up in Theorem 2.

The second part of the paper is then devoted to several numerical experiments with the
previously constructed projection. One approach could have been to develop a generalized
Riemann solver as in Reference [14] for the gas dynamics equations in Lagrangian coordinates.
The theory of the generalized Riemann problem can be found, for example, in the papers of
Bourgeade et al. [16], Ben Artzi and Falcovitz [17]. It is also sketched in the book of
Godlewski and Raviart [15]. The problem is that the implementation of this solver is very
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complex. So we prefer to follow here much simpler approaches. We present two kinds of
numerical results:

• The �rst are obtained with a second-order kinetic scheme. We use the Boltzmann kinetic
interpretation of the Euler equations in order to construct an approximate second-order
Riemann solver. For the computations, we choose a compactly supported Maxwellian
proposed by Perthame [7]. But instead of taking a piecewise constant density function in
the microscopic scheme, we take a piecewise linear density function. The free transport
Boltzmann equation can then be solved exactly. A second-order approximate Riemann
solver is then obtained by taking the moments of the resulting microscopic solution.
After the Boltzmann step, the solution is piecewise polynomial in each cell and can be
computed explicitly. We are then in a position to apply the results of the �rst part of
the paper and provide some numerical experiments which validate the whole procedure.

• The previous construction is quite complicated. So we propose also another approach.
We do not try to construct a high order Riemann solver but reconstruct a high order
approximation of the solution from its cell averages. The cell averages are computed with
a standard Godunov �ux. Without limitations, the scheme would present oscillations. We
then apply the entropic projection to the reconstruction in order to evaluate the damping
of the oscillations.

We conclude the paper with some comments about possible extensions and applications of
the entropic projection.

1. ENTROPY SOLUTION OF EULER EQUATIONS

1.1. Euler equations

In the present paper, we focus our attention on the numerical approximation of the discontin-
uous solutions of the Euler system for polytropic gases. With standard notation, this system
reads:

@tw + @xf(w)=0; t ¿ 0; x∈R
w(0; x)=w0(x)

(1)

where

w=

⎛
⎜⎜⎝
�

�u

E

⎞
⎟⎟⎠ ; f(w)=

⎛
⎜⎜⎝

�u

�u2 + p

(E + p)u

⎞
⎟⎟⎠

and

E = ��+
(�u)2

2�

p= (�− 1)��; � ¿ 1
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It is well known that this system is strictly hyperbolic over the phase space

�=
{
w∈R3; � ¿ 0; �u∈R; E − (�u)2

2�
¿ 0

}

1.2. Entropy condition

Generally, the weak solution of (1) is not unique. Assuming that theoretical results for scalar
conservation laws extend to systems, an entropy condition has to be added to the Euler system
in order to recover uniqueness.

De�nition 1
Let U (w) be a convex function of w, and let F(w) be a function such that the following
additional conservation law holds whenever w is a strong solution

@tU (w) + @xF(w)=0

(U;F) is then called a Lax entropy pair for the system (1) (U is the entropy and F the
entropy �ux).

De�nition 2
A weak solution w(t; x) of (1) is an entropy solution if and only if for every entropy pair
(U;F), the following inequality holds:

@tU (w) + @xF(w)6 0; t ¿ 0; x∈R
The previous notions have been introduced by Lax in Reference [18] for general systems of
conservation laws. The mathematical existence and uniqueness of the entropy solution is still
an open problem. In this paper this well-posedness result is supposed to hold.

The practical computation of the Lax entropies for the Euler system is given for exam-
ple (among many others) in the PhD thesis of Croisille [19] or in the book of Raviart and
Godlewski [20]. It appears that a family of regular entropies can be constructed in the fol-
lowing way: let us introduce the following quantity:

S=(��)1=�

It can be checked that (−S;−uS) is a Lax entropy pair of the Euler system. We now consider
the family (U; uU ) de�ned by

U =�G
(
S
�

)

where G is a C2 function on R+∗ such that

G′ ¡ 0 and G′′ ¿ 0

It is proved in Reference [19] that this construction gives all the C2 entropies of the Euler
system of the form (U;F) with F = uU . Another expression of the entropies is given by

U =�H
(�
S

)
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where H is a C2 function on R+∗ such that

H ′(x) + xH ′′(x)¿ 0; x∈R+∗

2. GENERALIZED GODUNOV SCHEME

The framework of generalized second-order Godunov schemes approximating (1) can now be
stated.
A time-step �¿0, and a space-step h¿0 being given, we consider the following discretiza-

tion in time tn= n� (n¿ 0) and space xi= ih (i∈Z). The cell i is de�ned by Ci=]xi−1=2; xi+1=2[.
We start with an approximation of w(tn; x) at time tn

wn(x) ≈ w(tn; x)
which is supposed to be piecewise linear with

wn(x)=wni + s
n
i (x − xi); ∀x∈Ci

(in the classical Godunov scheme sin=0).

Remark 1
To be more general, we can also consider another set of variables given by a regular trans-
formation:

�=�(w); w∈�
and suppose that � is piecewise linear:

wn(x)=�−1(�ni + d
n
i (x − xi)) ∀x∈Ci

This approach will be developed in the next part.

In order to compute a new wn+1(x), two steps are then performed:

• First, the Euler equations and the entropy conditions are exactly solved during a short
period of time �:

@tv+ @xf(v) = 0 t ¿ 0; x∈R
@tU (v) + @xF(v)6 0

v(0; x) = wn(x)

and this is done for all Lax entropy pairs (U;F). The solution v(�; x) will be denoted by
wn+1;−(x) and is generally no longer linear in each cell.

• wn+1;−(x) has to be approximated again by a piecewise linear function. Let P1h be the
space of piecewise (per cell) linear functions, then we look for a (possibly non-linear)
operator � : L∞(R)→ P1h such that

wn+1(x)=�wn+1;−(x)

� is also supposed to be a projection in the sense that �w=w whenever w∈P1h .
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In the case of the classical �rst-order Godunov scheme the projection consists simply of
cell-averaging

�w(x)= �w=
1
h

∫
Ci
w; x∈Ci; i∈Z

If the projection is an approximation of order 2 (with respect to h) of wn+1;−, then the
resulting scheme is of order 2 in space (and of order 1 in time) in the sense of consistency.
But good precision will be achieved only under some stability conditions. We shall now
describe a possible set of stability conditions.

3. ENTROPY DIMINISHING PROJECTION

As mentioned in the introduction, we wish to generalize the Godunov idea to second-order
schemes. The �rst step consists of solving exactly (or at least with given precision) generalized
Riemann problems between two cells starting from a piecewise linear approximation of the
solution. Actually, in order to be more general, we shall consider in each cell the case of
an initial condition in a �nite dimensional manifold M of regular functions de�ned on the
cell. It is clear that after the exact resolution step, the solution is, generally speaking, no
longer in M . A regular approximation in the cell has to be recovered, with the decrease
of entropies.
A second-order Riemann solver will be constructed later on, and in this part we focus only

on the projection step of the Godunov method.

3.1. Second-order entropy diminishing projections

Because we are looking for a projection de�ned locally, i.e. on each cell Ci, we can suppose,
for simplicity, that Ci=]0; 1[. The projection problem can then be presented in the following
abstract setting (introduced in Reference [13, 14]):

De�nition 3
Let M be a �nite dimension manifold included in C∞([0; 1];�). Let w=(�; �u; E)T be an
element of L∞ ∩ BV ([0; 1];�), and let � be a (generally non-linear) projection from L∞ ∩
BV ([0; 1];�) into M which satis�es the following property: for all Lax entropy pairs (U;F),

∫ 1

0
U (�w(x)) dx6

∫ 1

0
U (w(x)) dx (2)

Such an operator will be denoted as an entropy diminishing projection on M .

Let us note that condition (2) implies a conservation property. Indeed, when applied to the
following degenerate entropies:

U (w)= ± �; U (w)= ± �u; U (w)= ± E
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we get

�w :=
∫ 1

0
�w(x) dx=

∫ 1

0
w(x) dx

In the classical Godunov method, M is the set of constant states which are in � and the
projection is given by

�w= �w

Inequality (2) then holds thanks to the Jensen inequality. The problem here is that we are
looking for an approximation of the function w which is of order two when rescaled to an
interval of size h. Let us de�ne precisely this second-order property.

De�nition 4
Let � be an entropy diminishing projection from L∞ ∩ BV ([0; 1];�) into M . Let w̃ be an
element of C2([0; h];�) and w(x)= w̃(xh); x∈ [0; 1]: After projection of w we can de�ne

�̃w̃(t) := �w
(
t
h

)
; t ∈ [0; h]

then � is said to be a second-order entropy diminishing projection if∣∣∣�̃w̃(t)− w̃(t)
∣∣∣ 6 �h2 (3)

where � is a constant which depends only on the C2 norm of w̃.

As we have seen before, in the case of �rst-order Godunov scheme, the �rst-order entropy
diminishing projection is necessarily unique. On the other hand, there exist many second-
order entropy diminishing projections with various choices of manifolds M . In the sequel, we
recall a general framework which allows the construction of second-order entropy diminishing
projections. We then use special features of the Euler equations to build a simple explicit
projection for this hyperbolic system.

3.2. Pseudo-derivative

We are going to derive a su�cient condition on � in order to satisfy the very important
inequality (2). It is based on the following notion of (what we decided to call) pseudo-
derivative which was introduced �rst by Bouchut et al. in Reference [13] in the case of a
scalar equation. It was also studied by Coquel and Le Floch in Reference [14] for systems.

De�nition 5
Let w be an element of L∞ ∩ BV ([0; 1];�). The pseudo-derivative of w is the continuous
function N (w)∈C(]0; 1[; R3) de�ned by

N (w)(x)=
2

1− x
∫ 1

x
w(t) dt − 2

x

∫ x

0
w(t) dt
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The linear operator N satis�es the following properties:

• For all constants C, N (w + C)=N (w).
• If w is regular enough, N (w)(x)= ∫ 10 ’(x; t)w′(t) dt. Where the graph of t → ’(x; t) is
given below

• If w is regular, for all x∈ ]0; 1[ there is a �(x)∈ ]0; 1[ such that

N (w)(x)=w′(�(x)) (4)

• If �w= ∫ 10 w(t) dt=0 then
−x(1− x)

2
N (w)(x)=

∫ x

0
w(t) dt

• Finally, if �w= ∫ 10 w(t) dt=0, the following integration by parts formula holds:
∫ 1

0
v(t)w(t) dt=

∫ 1

0

t(1− t)
2

N (w)(t)v′(t) dt

A su�cient condition for the decrease of the mean entropy can then be stated.

Theorem 1
Let � be a projection from L∞ ∩ BV ([0; 1];�) into M . If for all w∈L∞ ∩ BV ([0; 1];�), all
x∈ ]0; 1[, and all entropies U ,

dx�w ·U ′′(�w)(x)(N (w)(x)− dx�w)¿ 0 (5)

then, � is an entropy diminishing projection.
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Proof 1
This is a consequence of the basic convex inequality

∫ 1

0
U (w)−U (�w)¿

∫ 1

0
U ′(�w)(w −�w)

=
∫ 1

0
U ′(�w)( �w −�w)

+
∫ 1

0

t(1− t)
2

dx�w ·U ′′(�w)(t)(N (w)(t)− dx�w) dt (6)

At this stage, condition (5) would provide us with a practical de�nition of �w if we
were studying a scalar equation instead of the Euler system (see Reference [13]). Using the
convexity of entropies U , the previous condition reduces to

dx�w · (N (w)(x)− dx�w)¿ 0 (7)

De�ne the minmod function of a set of reals as

minmod E=

∣∣∣∣∣∣∣∣
inf E if E ⊂ R+

supE if E ⊂ R−

0 otherwise

then a possible choice for �w is the linear function �w(x)= �w + dx�w(x − 1=2) where the
real number dx�w is de�ned by

dx�w=minmod{N (w)(x); x∈ ]0; 1[} (8)

This de�nes a second-order entropy diminishing projection thanks to property (4).
In the case of a system of conservation laws, U ′′(�w)(x) are positive de�nite matrices

which de�ne a metric for all values of x∈ ]0; 1[. If that metric was constant then we may
de�ne dx�w as the vector in the convex envelope N ◦ of {N (w)(x); x∈ ]0; 1[} that minimizes
the norm associated to the metric i.e.

dx�wT ·U ′′ · dx�w= min
v∈N◦ v

T ·U ′′ · v (9)

But since the metric is changing with x, the practical use of condition (5) is not at all
straightforward. The inequality can however be used to establish the existence of a solution
(see Reference [14]) and to derive a family of projections that partially (that is to say up to
a certain order n) ful�ll it (see for an example Reference [14]).
In the next section, we adapt the previous method in order to build an exact second order

entropy diminishing projection in the case of the Euler equations.
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4. EXPLICIT COMPUTATION OF THE PROJECTION: EULER CASE

The starting point of the explicit projection procedure is an element

w0 = (�0; q0 =�0u0; E0)T ∈L∞ ∩ BV ([0; 1];�)
In the sequel, we will denote by � a second-order entropy diminishing projection. The projec-
tion w2 =�w0 thus belongs to C∞([0; 1];�). For practical reasons, w2 will be obtained from an
intermediate state, noted w1 = (�1; q1 =�1u1; E1)T ∈C∞([0; 1];�). In other words, w1 =�1w0,
and our explicit projection � is the composition of two operators �1 and �2:

�=�2 ◦�1
Let us �rst describe operator �1. We have seen in the introduction that all the C2 entropies

of the Euler system have a rather simple form when expressed as a function of the quantity
S=(��)1=�. We thus de�ne

S0 = (E0 − 1
2 �0u

2
0)
1=�

On the other hand, we wish w1 to be C∞. A simple possibility is to set

S1 = S0 + dS1(x − 1=2) (10)

�1 =�0 + d�1(x − 1=2) (11)

q1 = q0 + dq1(x − 1=2) (12)

where, as before, �z is a notation for the mean value of the quantity z on the interval [0; 1]: The
real numbers dS1; d�1, dq1 are to be guessed (and will be de�ned explicitly in the sequel).
With our choice, the quantities S1, �1, q1 are thus linear in the cell [0; 1] and have the same
mean values as S0, �0, q0.
Setting

w1 = (�1; q1; E1 = 1
2�1u

2
1 + S

�
1) (13)

it is clear that w1 is regular but not linear in the cell. It is also clear that, since S1 = S0,
the �rst projection operator �1 is not conservative in the sense that, in general, density and
impulsion are conserved but not energy. Thus

q1 = q0; �1 =�0; E1 �= E0
This fact justi�es the necessity of a correction w2 =�2w1, if this approach is employed, in
order to recover the conservation of energy.
The simplest way to obtain w2 is to correct the energy by taking

�2 = �1

q2 = �2u2 = q1

E2 = E1 − E1 + E0
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But with this choice, the operator w0 →w2 is not a projection. For this reason, we prefer
to take

E2 = 1
2 �1u

2
1 + (K + S1)

� (14)

where the constant K should be chosen in such a way that

E2 =E0 (15)

We suggest then to de�ne the approximation manifold M by:

De�nition 6
M is the set of vector functions w= x→ (�(x); q(x); (q(x)2=2�(x)) + S(x)�) de�ned on [0; 1]
such that the functions �, q, and S are linear and such that ∀x∈ [0; 1], w(x)∈� (which is
equivalent to ∀x∈ [0; 1], �¿0, S¿0)
In other words, according to the notations of Remark 1, we have simply set �=(�; �u; S).
The problem is now to verify that the correction (14) can be done with the decrease of

any entropy U : ∫
U (�2; q2; E2)6

∫
U (�1; q1; E1)

But the convexity of U with respect to the conservative variables gives∫
U (�1; q1; E1)¿

∫
U (�2; q2; E2) +

∫
@U
@E

(w2)(E1 − E2)

On the other hand, we know that

@U
@E

(w)=�G′
(
S
�

)
@S
@E

and

S=
(
E − q2

2�

)1=�
⇒ @S
@E
=
1
�
S1−�¿0

which implies that @U=@E¡0 on the phase space �. It is thus natural to require that,
E1 − E0¡0 on the cell, or, in an equivalent way, that

K¿ 0

Actually, it will be more convenient (and it is possible) to ask a little bit more. We know
that the energy is the sum of two terms:

E=
q2

2�
+ S�

and we will require the decrease of these two terms separately:∫
q21
2�1

6
∫

q20
2�0

(16)
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and ∫
C(S1)6

∫
C(S0) ∀C ∈C2(R; R); convex (17)

In order that the global process �=�2 ◦ �1 be entropy decreasing, it is �nally su�cient to
require the last family of inequalities∫

�1H
(
S1
�1

)
dx6

∫
�0H

(
S0
�0

)
(18)

where H is any C2 function on R+∗ such that

H ′(x) + xH ′′(x)¿0; x∈R+∗

Remark 2
Inequality (17) automatically enforces S1¿0 on ]0; 1[. Indeed, consider a C2(R; R) convex
function C satisfying

C(y) = 0 when y¿ 0

C(y)¿ 0 when y¡0

then, because S0¿0, we have 06
∫
C(S1)6

∫
C(S0)=0 and then S1¿0. In the same way,

inequality (18) implies that �1¿0 if we suppose that S0¿0, S1¿0 and �0¿0. These properties
are very important for the numerical approximation of the Euler equations. They ensure that
the resulting second-order entropy diminishing scheme is also a positive scheme.

We sum up the previous construction in the following proposition:

Proposition 1
Let w0 = (�0; q0 =�0u0; E0)T ∈L∞ ∩ BV ([0; 1];�), and let w1 = (�1; q1 =�1u1; E1 = 1

2 �1u
2
1 +

S�1)
T ∈C∞([0; 1];�) where �1, q1, and S1 are linear functions de�ned by (10)–(12). Suppose

that the slopes of �1, q1, and S1 are computed in order to satisfy (16)–(18). Let �nally
w2 = (�1; q1; E2)T ∈C∞([0; 1];�), where E2 is corrected according to (14) and (15). Then, the
non-linear operator � :w0 →w2 is an entropy diminishing projection on the manifold M of
De�nition 6.

The construction of an entropy diminishing second-order projection is now reduced to the
computation of three slopes dS1, d�1, and dq1 satisfying inequalities (16)–(18). The important
fact is that we have now to solve a triangular set of inequalities. In practice, we will have
�rst to �nd a dS1 satisfying (17). Then our choice of S1 will be inserted in (18) in order to
get d�1. Then, knowing S1 and �1, we are in a position to solve (16) and compute q1.
The computation of S1 is quite simple if we apply the computations leading to formula (8).

We thus propose

dS1 =minmod{N (S0)(x); x∈ [0; 1]} (19)

For the evaluation of d�1 a longer computation has to be performed.
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Lemma 1
Let �0 and S0 be two positive functions in L∞ ∩BV ([0; 1]; R). Let �1 and S1 be two positive
and linear functions de�ned on [0; 1]:

S1 = S0 + dS1(x − 1=2) (20)

�1 =�0 + d�1(x − 1=2) (21)

Then, a su�cient condition on the slope d�1 in order to have (18) is that the following
inequality holds on [0; 1]:

� ·
(
S1
S0
(S0N (�0)− �0N (S0))− S0 + N (S0)(x − 1=2)

S0
�

)
¿ 0 (22)

where � is de�ned by �= S0d�1 − �0dS1.
Proof 2
It is easy to check that (�; S) → �H (S=�) is a convex function. Thus, using Theorem 1, a
su�cient condition in order to have (18) is

(d�1; dS1)

⎛
⎜⎜⎝

1 −�1
S1

−�1
S1

(
�1
S1

)2
⎞
⎟⎟⎠
(
N (�0)− d�1
N (S0)− dS1

)
¿ 0

or

(S1d�1 − �1dS1)(S1N (�0)− �1N (S0)− (S1d�1 − �1dS1))¿ 0

using (20) and (21), and thanks to basic computations, we �nd (22).

The slope dq1 is computed in the same spirit.

Lemma 2
Let q0 and �0 be two functions in L∞ ∩BV ([0; 1]; R), with �0¿0. Let q1 and �1 be two linear
functions de�ned on [0; 1], with �1¿0.

q1 = q0 + dq1(x − 1=2)
�1 =�0 + d�1(x − 1=2)

(23)

Then, a su�cient condition on the slope dq1 in order to have (16) is that the following
inequality holds on [0; 1]:

	 ·
(
�1
�0
(�0N (q0)− q0N (�0))− �0 + N (�0)(x − 1=2)

�0
	
)
¿ 0 (24)

where 	 is de�ned by 	=(�0dq1 − q0d�1).
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The next theorem is devoted to the practical computation of the slopes dS1; d�1; dq1 in order
to solve inequalities (16)–(18) and in order to maintain the second-order property.

Theorem 2
With the previous notations, consider:

� = S0d�1 − �0dS1; 	=(�0dq1 − q0d�1)

g�(x) =
S0 + N (S0)(x)(x − 1=2)

S0
; g	(x)=

�0 + N (�0)(x)(x − 1=2)
�0

h�(x) =
S1
S0
(S0N (�0)(x)− �0N (S0)(x))

and

h	(x)=
�1
�0
(�0N (q0)(x)− q0N (�0)(x))

Then, if dS1 is de�ned by (19) and if � and 	 are de�ned by

1
�
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
x∈[0;1]

g�(x)
h�(x)

if h�¿0

min
x∈[0;1]

g�(x)
h�(x)

if h�¡0

∞ otherwise

1
	
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
x∈[0;1]

g	(x)
h	(x)

if h	¿0

min
x∈[0;1]

g	(x)
h	(x)

if h	¡0

∞ otherwise

then, �1, S1, q1 are second-order approximations of respectively �0, S0, q0, and inequalities
(17), (22), (24) are satis�ed. In other words, with this choice of slopes, � is a second-order
entropy diminishing projection.

Proof 3
The case of dS1 has already been treated before. The inequality to solve for � is

�(h�(x)− �g�(x))¿ 0
�=0 is a solution, but in order to achieve second-order, � has to be a �rst-order approx-
imation of h�(x). Thus, we can assume that � and h� have the same signs. Then, sup-
pose that h�(x)¿0 for all x ∈ [0; 1]. If �¿0, we have to solve 1=�¿ g�(x)=h�(x); x ∈
[0; 1]. We thus take 1=�= max[0;1](g�(x)=h�(x))¿0. In the same way, if h�(x)¡0 we choose
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1=�= min[0;1] (g�(x)=h�(x))¡0. Finally, if h� takes positive and negative values on [0; 1], we
take �=0. The computation of 	 is completely similar.

5. FIRST APPLICATION: A SECOND-ORDER BOLTZMANN SCHEME

5.1. An approximate Riemann solver based on a kinetic interpretation

In this part, a possible computation of wn+1;− is presented. For practical reasons, we shall
not use a classical Riemann solver, but instead, a resolution step based on the kinetic inter-
pretation of the Euler equations. The kinetic interpretation that we will describe below has
been proposed by Perthame in Reference [7]. His model has the property of being entropy
diminishing for one particular entropy (see Reference [7]) and not necessarily for the other
entropies. For simplicity, it will be exposed in the case �=3, where the computations are
easier, but can be extented to other values of �. Actually, it would be better to use the more
recent model of Bouchut as described in Reference [21], which is entropy diminishing for all
entropies.
Let us describe the original kinetic interpretation of Perthame. For this purpose, we introduce

the following function (called in the sequel generalized Maxwellian).

Mw(v)=
�

2
√
6�
Y
(
v− u√
6�

)
(25)

where
• Y is the characteristic function of [−1; 1]:

Y (t)=

{
1 if |t|¡1
0 if |t|¿ 1

• v is the microscopic speed.

• w=
⎛
⎝ �

�u

E

⎞
⎠ is the macroscopic state of the gas.

It is straightforward to check that

∫ v=+∞

v=−∞
Mw(v)

⎛
⎜⎜⎝
1

v

v2=2

⎞
⎟⎟⎠dv=w

Let us now set

m(t; x; v)=Mw(t;x)(v)

It is also easy to check that∫ v=+∞

v=−∞
@tm+ v@xm= @tw + @xf(w) (26)
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This fact leads to a numerical resolution known as a Boltzmann scheme. Many papers have
been published on this subject. Without pretending to be exhaustive, we can cite for example
the works of Deshpande [6], Bourdel et al. [8]. All these works are based on the physical
Maxwellian. Each time step of a Boltzmann scheme is made of two substeps.

• Free transport step: wn(x) being given, the following evolution problem is solved during
a time step:

@tg+ v@xg=0; 06 t6 �

g(0; x; v)=Mwn(x)(v)
(27)

• Collision step: from the solution at time t= �, a new macroscopic state is recovered

wn+1;−(x)=
∫ v=+∞

v=−∞
g(�; x; v)K(v) dv

where

K(v)=

⎛
⎜⎜⎝
1

v

v2=2

⎞
⎟⎟⎠

It is important here to point out that the Boltzmann solver is only an approximate Riemann
solver. This is due to the fact that during the free transport procedure (27) the equality

m(t; x; v)= g(t; x; v)

does not hold (the microscopic state is not a generalized Maxwellian). The collision step acts
as a relaxation of the microscopic state to a Maxwellian state. Of course this solver tends to
an exact solver when �→ 0.
On the other hand, despite its simplicity, this approach leads to very tedious computations

for wn+1;−. Therefore, we propose the following simpli�cation: in the free transport step (27),
we replace the initial condition by its linear interpolation on each cell

f(0; x; v)=
x − xi−1=2

h
Mwi; r (v) +

xi+1=2 − x
h

Mwi; l(v) for x∈Ci

where

wi; r =wni +
h
2
sni and wi; l=wni − h

2
sni

It must be noticed that this approximation is conservative but unfortunately, it is also nec-
essarily entropy increasing because we replace a Maxwellian state (which corresponds to a
minimum of entropy) at each point of the cell by a linear approximation.
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5.2. Computation of the approximate second-order Riemann solver

Let x∈Ci, we have

wn+1;−(x)=
∫ +∞

v=−∞
f(0; x − v�; v)K(v) dv

Consider then the speed vmin (respectively, vmax) at which a particle in xi+1=2 (respectively,
xi−1=2) at time t=0 reaches x at time t= �

vmin =
x − xi+1=2

�
¡0

vmax =
x − xi−1=2

�
¿0

The time step � is supposed to be smaller than hv∗, where v∗ is greater than the biggest
support of all the generalized Maxwellians plus the maximal speed of the �ow. Thanks to this
CFL condition, the computation of wn+1;−(x) can then be split into three parts: a contribution
from the left cell Ci−1, the right cell Ci+1, and the middle cell Ci:

wn+1;−(x) = Al + Am + Ar

Al =
∫ +∞

v=vmax

[
x − v�− xi−3=2

h
Mwi−1; r (v) +

xi−1=2 − x + v�
h

Mwi−1; l(v)
]
K(v) dv

Ar =
∫ vmin

v=−∞

[
x − v�− xi+1=2

h
Mwi+1; r (v) +

xi+3=2 − x + v�
h

Mwi+1; l(v)
]
K(v) dv

Am =
∫ vmax

v=vmin

[
x − v�− xi−1=2

h
Mwi; r (v) +

xi+1=2 − x + v�
h

Mwi; l(v)
]
K(v) dv

A more detailed expression of Al; Ar; Am is given in Appendix A. It can be checked that
wn+1;− is piecewise polynomial of degree 6 4 on each cell. The number of pieces is 6 22.

5.3. Numerical results

For the numerical results that are presented in this section, we decided to compute exactly
wn+1;− given by the kinetic Riemann solver. This is done thanks to a C++ class of piecewise
polynomial functions. It appears then that Sn+1;− is not, in general, piecewise polynomial. We
thus had to construct a piecewise polynomial approximation S̃ of Sn+1;−. This is done with a
Tchebychev interpolation with three points on each piece of regularity of wn+1;−. Then N (�),
N (q), and N (S̃) can be computed exactly. The �nal limitation procedure has been performed
numerically with a sampling of the functions we wanted to maximize or minimize on each
cell.
We were able to verify that our projection operator acts at least as a classical minmod

limiter. Indeed, the numerical results appear to be precise and present no oscillation on a 200
cells mesh.
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Figure 1. Density. First or second order. 100 or 200 cells.

We tested the scheme on the classical case of a shock tube problem with the following
initial data:

Variable Left state Right state

Density �L =2 �R =1
Velocity uL =0 uR =0
Pressure pL =8 pR =2
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Figure 2. Velocity. First or second order. 100 or 200 cells.

In the Figures 1–3 a comparison is made between the �rst and the second-order schemes
with 100 or 200 cells. The results are given at time t=1. In the case of the �rst-order solution,
the real (piecewise constant) mathematical solution has been plotted. Density, velocity and
pressure are successively presented.
With a mesh re�nement, oscillations start to appear. The phenomenon can be observed

with a classical MUSCL scheme. This is due to the fact that the scheme is only �rst-order
in time.
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Figure 3. Pressure. First or second order. 100 or 200 cells.

The complexity of the scheme leaded us to abandon this approach. The next section is thus
devoted to a more tractable application of the entropic projection.

6. SECOND APPLICATION: MEAN VALUE APPROACH

In this part, we envisage a simpler approach than the kinetic approach. We �rst build a
polynomial interpolation of the solution, starting from cell averages, as in Harten’s ENO
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schemes [22]. We use an interpolation without upwinding or limitation in order to evaluate
the e�ect of the entropic projection.
More precisely, suppose that we know the mean value wni of the solution at time n in the

cell Ci. A second order extension of the Godunov scheme reads

wn+1i =wni − �
h
(fn+1=2i+1=2 − fn+1=2i−1=2 ) (28)

The �ux at interface i + 1
2 and time n+

1
2 is of the form

fn+1=2i+1=2 =f(R(w
n+1=2
i+1=2;−; w

n+1=2
i+1=2;+)) (29)

The quantity R(wL; wR) denotes the solution of the �rst-order exact Riemann problem at the
interface between wL and wR. The quantity wi+1=2;− is the value of the reconstructed solution
in the cell i at time n+ 1

2 and at the interface i+
1
2 . The choice wi+1=2;−=w

n
i corresponds to

the classical �rst-order scheme. We focus now on the cell i. For simplicity, we suppose that
Ci=]0; 1[.
The �rst step is to construct a high order approximation of w from the cell averages. We

thus suppose, with the notations of Section 4, that �0, q0 and S0 are second-order polynomials
in ]0; 1[. We also suppose that the reconstruction is conservative∫ j+1

j
w0(x) dx=wni+j; j= − 1; 0; 1 (30)

with

w0(x)=
(
�0(x); q0(x);

q20(x)
2�0(x)

+ S0(x)�
)T

(31)

It is known that the resulting interpolation is not necessarily positive for the density and the
pressure, even if all the mean values are positive. So we propose in Appendix B a simple
procedure to correct the interpolation, if necessary.
Because �0, q0 and S0 are now second-order polynomials, the computations described in

Theorem 1 become almost explicit. It is then possible to compute the limited variables �1,
q1 and S1, the energy correction described in (14) and then the �uxes at cell interfaces. The
second-order in time is achieved with the Hancock method. It uses the space slope estimate
to compute a time derivative estimate thanks to the conservation laws: wt = − f(w)x. The
time derivative estimate permits then to compute the approximation of w at time n+ 1

2 .
We have tested the scheme on the Riemann problem whose data are given in Tables I and II.

This case is chosen in the book of Toro [3]. It presents a sonic rarefaction wave and a shock.

Table I. Data of the Riemann problem.

Variable Left state Right state

Density �L = 1 �R = 0:125
Velocity uL = 0:75 uR = 0
Pressure pL = 1 pR = 0:1
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Table II. Computation characteristics.

Interval ]− 1=2; 1=2[
Number of cells 200
CFL 0:8
Final time t=0:2
� 1:4

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

’rhoex200’
’rho200muscl’
’rho200ent_pr’

Figure 4. Comparison entropic scheme—MUSCL-Hancock scheme.

We compare in Figures 4–6 the results of the reconstruction-limitation scheme with a standard
MUSCL-Hancock scheme (described in Reference [3]). We observe a slight improvement of
the precision in the contact discontinuity, but also small overshoots and undershoots in the
right shock. Without the correction described in Appendix B the computation would have not
ended. It is necessary only on one cell in the �rst time step and only for the reconstruction
of the density � near the contact discontinuity.
In the next numerical experiment, we evaluate the rate of convergence in the L1 norm (for

density �) of the reconstruction-limitation scheme and compared it in Figure 7 and Table
III with the standard MUSCL-Hancock scheme. The rate is computed for a simple contact
discontinuity whose values are given in Table IV. The characteristics of this computation
are summed up in Table V. We observe that the projection scheme is more precise than
the MUSCL scheme, but the asymptotic rates of convergence seems to be approximately the
same. Recall that, for a simple contact discontinuity, the standard MUSCL ‘second-order’
scheme has a convergence rate of 2

3 � 0:66666.
In the last numerical experiment, we evaluate the rate of convergence in the L1 norm (for

density �) of the reconstruction-limitation scheme and compared it in Figure 8 and Table VI
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Figure 5. Comparison entropic scheme—MUSCL-Hancock scheme.

Figure 6. Comparison entropic scheme—MUSCL-Hancock scheme.

with the standard MUSCL-Hancock scheme. The rate is computed for a simple shock whose
values are given in Table VII. The characteristics of this computation are summed up in
Table VIII. We observe that the projection scheme is more precise than the MUSCL scheme,

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:1029–1061



SECOND-ORDER ENTROPY SCHEME 1053

Figure 7. Comparison entropic scheme—MUSCL-Hancock scheme. Rate of
convergence for a contact discontinuity.

Table III. Convergence test, contact discontinuity.

ln(h) ln(error) MUSCL ln(error) proj. Rate MUSCL Rate proj.

−4:60517 −4:10716 −4:36288 — —
−5:29832 −4:55118 −4:84035 0.64058 0.68884
−5:99146 −4:99951 −5:31210 0.64681 0.68060
−6:68461 −5:45112 −5:77950 0.65153 0.67431
−7:37776 −5:90507 −6:24700 0.65491 0.67446

Table IV. Contact discontinuity.

Variable Left state Right state

Density �L = 2 �R = 1
Velocity uL = 1 uR = 1
Pressure pL = 1 pR = 1

but the asymptotic rates of convergence seem to be approximately the same. Recall that, for
a simple shock, the standard MUSCL ‘second order’ scheme has a convergence rate of 1.

The program we used for the numerical results of this section can be downloaded at
http://helluy/entropy/index.html
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Table V. Computation characteristics, contact.

Interval ]− 1=2; 1=2[
Number of cells 200 to 1600
CFL � 0:45
Final time t=0:2
� 1:4

Figure 8. Comparison entropic scheme—MUSCL-Hancock scheme. Rate of convergence for a shock.

Table VI. Convergence test, shock.

ln(h) ln(error) MUSCL ln(error) proj. Rate MUSCL Rate proj.

−4:60517 −6:12021 −6:45422 — —
−5:29832 −6:79584 −7:14075 0.97472 0.99045
−5:99146 −7:48411 −7:83202 0.99297 0.99730
−6:68461 −8:17001 −8:52117 0.98954 0.99423
−7:37776 −8:84886 −9:20612 0.97937 0.98817

Table VII. Shock wave of velocity 1.

Variable Left state Right state

Density �L = 1 �R = 3
4

Velocity uL = 0 uR = − 1
3

Pressure pL = 1 pR = 2
3
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Table VIII. Computation characteristics, shock.

Interval ]− 1=2; 1=2[
Number of cells 200 to 1600
CFL � 0:58
Final time t=0:2
� 1:4

7. CONCLUSION

In this paper, we have proposed a second-order generalization of the Godunov scheme for
the Euler equations. In the �rst part, we have built a second-order entropic projection with
explicit formulas. In the second part, we have numerically tested the projection. Because it is
di�cult to construct an exact second-order Riemann solver, we had to simplify the theoretical
approach. We proposed two applications: the slope limitation applied to an approximate kinetic
Riemann solver and the slope limitation applied to a polynomial reconstruction with cell
averages.
Our approach is rigorous and gives a clear justi�cation to the slope limitation procedure.
Many questions still remain. For example:

1. Is it possible to extend the scheme to higher dimensions?
2. Can we improve the e�ciency of the computation?
3. Is it possible to extend the method to more general equation of state (EOS) than the
perfect gas EOS?

The answer to the �rst question is yes. It can be done with at least two methods. The
�rst method, which is the simplest could be to use an alternate direction method. Then the
scheme is limited to cartesian grids. Another way would be to extend Theorem 1 to triangles
or quadrilaterals. We do not know if the computation of the practical projection remains
possible.
The answer to the second question is certainly yes. But we do not know if it is possible

to �nd a simpler computation without abandoning an exact entropy decrease. By relaxing
the exact entropy decrease or approximating the formula of Theorem 2, some schemes have
already been designed for the Lagrangian equations in Reference [14].
The answer to the third question is: maybe yes. The main ingredient in the presented

construction is the existence of an entropy whose hessian is degenerated. For a given pressure
EOS

p=p(�=1=�; �) (32)

the Lax entropies of the associated Euler equations are constructed, as described in Reference
[23], from the concave solutions s(�; �) of

@s
@�

− p @s
@�
=0 (33)
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The Lax entropies are then U = − �s. The general concave solutions of (33) are of the form
s=A(s0) where A is a function with monotony and convexity properties, and s0 a particular
solution. If the hessian of s0 is degenerated, maybe that the previous construction can be
generalized.
We would like to end this presentation by insisting on the fact that the second-order

entropic projection can be used as a slope limiter for other numerical methods. The Galerkin
discontinous method (see References [24–26]) could be a candidate for such a limiter. Indeed
in this method a piecewise polynomial approximation at each time step has to be limited in
order to avoid spurious oscillations.

APPENDIX A: COMPUTATIONS FOR THE BOLTZMANN SCHEME

We start with Am:

Am =
x − xi−1=2

h

∫ vmax

v=vmin

Mwi; r (v)K(v) dv

− �
h

∫ vmax

v=vmin

Mwi; r (v)vK(v) dv

+
xi+1=2 − x

h

∫ vmax

v=vmin

Mwi; l(v)K(v) dv

+
�
h

∫ vmax

v=vmin

Mwi; l(v)vK(v) dv

Am =
x − xi−1=2

h
�i; r

2
√
6�i; r

⎡
⎢⎢⎢⎢⎣
v

v2=2

v3=6

⎤
⎥⎥⎥⎥⎦

min(vmax ;ui; r+
√
6�i; r)

max(vmin ;ui; r−
√
6�i; r)

− �
h

�i; r
2
√
6�i; r

⎡
⎢⎢⎢⎢⎣
v2=2

v3=3

v4=8

⎤
⎥⎥⎥⎥⎦

min(vmax ;ui; r+
√
6�i; r)

max(vmin ;ui; r−
√
6�i; r)
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+
xi+1=2 − x

h
�i; l

2
√
6�i; l

⎡
⎢⎢⎣
v

v2=2

v3=6

⎤
⎥⎥⎦
min(vmax ;ui; l+

√
6�i; l)

max(vmin ;ui; l−
√
6�i; l)

+
�
h

�i; l
2
√
6�i; l

⎡
⎢⎢⎣
v2=2

v3=3

v4=8

⎤
⎥⎥⎦
min(vmax ;ui; l+

√
6�i; l)

max(vmin ;ui; l−
√
6�i; l)

In the same way:

Al =
x − xi−3=2

h
�i−1; r

2
√
6�i−1; r

⎡
⎢⎢⎣
v

v2=2

v3=6

⎤
⎥⎥⎦
ui−1; r+

√
6�i−1; r

max(vmax ;ui−1; r−
√
6�i−1; r)

− �
h

�i−1; r
2
√
6�i−1; r

⎡
⎢⎢⎣
v2=2

v3=3

v4=8

⎤
⎥⎥⎦
ui−1; r+

√
6�i−1; r

max(vmax ;ui−1; r−
√
6�i−1; r)

+
xi−1=2 − x

h
�i−1;l

2
√
6�i−1;l

⎡
⎢⎢⎣
v

v2=2

v3=6

⎤
⎥⎥⎦
ui−1;l+

√
6�i−1;l

max(vmax ;ui−1;l−
√
6�i−1;l)

+
�
h

�i−1;l
2
√
6�i−1;l

⎡
⎢⎢⎣
v2=2

v3=3

v4=8

⎤
⎥⎥⎦
ui−1;l+

√
6�i−1;l

max(vmax ;ui−1;l−
√
6�i−1;l)

and

Ar =
x − xi+1=2

h
�i+1; r

2
√
6�i+1; r

⎡
⎢⎢⎣
v

v2=2

v3=6

⎤
⎥⎥⎦
min(vmin ; ui+1; r+

√
6�i+1; r)

ui+1; r−
√
6�i+1; r
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− �
h

�i+1; r
2
√
6�i+1; r

⎡
⎢⎢⎢⎣
v2=2

v3=3

v4=8

⎤
⎥⎥⎥⎦
min(vmin ; ui+1; r+

√
6�i+1; r)

ui+1; r−
√
6�i+1; r

+
xi+3=2 − x

h
�i+1; l

2
√
6�i+1; l

⎡
⎢⎢⎣
v

v2=2

v3=6

⎤
⎥⎥⎦
min(vmin ; ui+1; l+

√
6�i+1; l)

ui+1; l−
√
6�i+1; l

+
�
h

�i+1; l
2
√
6�i+1; l

⎡
⎢⎢⎢⎣
v2=2

v3=3

v4=8

⎤
⎥⎥⎥⎦
min(vmin ; ui+1; l+

√
6�i+1; l)

ui+1; l−
√
6�i+1; l

It is easy to check that wn+1;− is piecewise polynomial and continuous on each cell. For
instance, the practical computation of a term like

A=

⎡
⎢⎢⎣
v

v2=2

v3=6

⎤
⎥⎥⎦
min(vmax ; V )

max(vmin ; v)

where v¡V , gives

A=

⎡
⎢⎢⎣

V − v
V 2=2− v2=2
V 3=6− v3=6

⎤
⎥⎥⎦ if vmin¡v and vmax¿V; i:e: x∈ ]V�+ xi−1=2; v�+ xi+1=2[

A=

⎡
⎢⎢⎣

V − vmin
V 2=2− v2min=2
V 3=6− v3min=6

⎤
⎥⎥⎦ if vmin¿v and vmax¿V; i:e: x∈ ]v�+ xi+1=2; V�+ xi+1=2[

A=

⎡
⎢⎢⎣

vmax − v
v2max=2− v2=2
v3max=6− v3=6

⎤
⎥⎥⎦ if vmin¡v and vmax¡V; i:e: x∈ ]v�+ xi−1=2; V�+ xi−1=2[

A=0 if x¿V�+ xi+1=2 or x¡v�+ xi−1=2
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Remark
By the CFL condition the inequality V�+ xi−1=2¡v�+ xi+1=2 necessarily holds.

APPENDIX B: POSITIVE MEAN VALUE INTERPOLATION

This appendix is devoted to an algorithm in order to avoid negative values in the interpolation
process. In all the numerical tests that we presented it was necessary to activate this correction
only on a few cells. This method can be interesting for other purposes.
For this, we consider a scalar non-negative function f de�ned on the interval [−1; 2]. We

know the mean values of f on the sub-intervals Ii=[i − 1; i], i=0; 1; 2

fi=
∫ i

i−1
f(t) dt¿ 0 (B1)

A classical interpolation would be to �nd a second-order polynomial P satisfying

fi=
∫ i

i−1
P(t) dt (B2)

but it is known that this interpolation can be negative in some point in the interval [0; 1], even
if the three mean values fi are positive. Instead, we will consider a constrained optimization
problem. We consider a base (Pi) of the second-order polynomials satisfying

∫
Ii
Pj= 
ij where


ij is the Kronecker symbol.

P1(x)=−x2 + x + 5
6

P0(x)=
x2

2
− x + 1

3

P2(x)=
x2

2
− 1
6

(B3)

The polynomial P is searched under the form

P= g0P0 + g1P1 + g2P2 (B4)

In this way, the mean values of P on [i− 1; i] are gi for i=0; 1; 2. The conservation property
imposes

g1 =f1 (B5)

We then consider the functional J (P)= 1
2((g0−f0)2 + (g2−f2)2). We solve the optimization

problem: �nd P¿ 0 such that g1 =f1 and J (P) is minimal. Note that if the interpolation
polynomial de�ned in (B2) is non-negative then it solves the minimization problem and then
J (P)=0.
Consider the Lagrangian L(P; �)= J (P) − 〈�; P〉, where � is in the set M 1;+ of positive

bounded measures on [0; 1]. The optimization problem is equivalent to

inf
g0 ; g1 ; g2
g1=f1

sup
�∈M 1;+

L(P; �) (B6)
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The optimality condition classically reads

g0 =f0 + 〈�; P〉

g2 =f2 + 〈�; P〉

∀x ∈ [0; 1]; �(x)P(x)=0

But a second-order polynomial has at most two roots. This means that � is a linear combination
of at most two Dirac masses. Due to the fact that P has to be non-negative, we can then
distinguish the following cases:

1. P is positive, then g0 =f0, f1 = g1 and g2 =f2.
2. P is positive in ]0; 1] and P(0)=0 then f0 = g0 + �0P0(0), f1 = g1 and f2 = g2.
3. P is positive in [0; 1[ and P(1)=0 then f2 = g2 + �2P2(1), f1 = g1 and f0 = g0.
4. P is positive in ]0; 1[ and P(0)=P(1)=0 then f0 = g0+�0P0(0), f2 = g2+�2P2(1) and
f1 = g1.

5. P is positive in [0; 1]− x0, with x0 ∈]0; 1[. Then, f0 = g0 +�0P0(x0), f2 = g2 +�0P2(x0),
f1 = g1, P(x0)=0, P′(x0)=0.

Due to the positivity of P, case (4) never happens. The algorithm to compute P is then the
following.
First, we have necessarily f1 = g1. Then the following cases are considered:

1. If g1¿ 1=2(g0+g2)) take f0 = g0, f1 = g1, f2 = g2. The resulting polynomial is concave
and ¿0;

2. if g16 1=2(g0 + g2)), try f0 = g0, f1 = g1, f2 = g2. The resulting polynomial is convex.
It is solution if P(0)¿ 0, P′(0)¿ 0 or P(1)¿ 0, P′(1)6 0.

3. if g1¡1=2(g0 + g2)) and 7=2g1 − 1=2g2¿ 0 and �0 = 3=2g2 − 15=2g1 − 3g0¿ 0 then the
solution is given by f0 = g0 + �0=3, f2 = g2;

4. if g1¡1=2(g0 + g2)) and 7=2g1 − 1=2g0¿ 0 and �2 = 3=2g0 − 15=2g1 − 3g2¿ 0 then the
solution is given by f0 = g0, f2 = g2 + �2=3;

5. Finally, if g1¡1=2(g0 + g2)) in all the other cases, solve f0 = g0 + �0P0(x0), f2 = g2 +
�0P2(x0), f1 = g1, P(x0)=0, P′(x0)=0 for x0 and �0.

The algorithm, written in Maple and C++ languages, can be downloaded and tested at
http://helluy/entropy/index.html.
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